Constrained Frobenius-Perron Operator to Analyse the Dynamics on Composed Attractors*

نویسنده

  • K. G. Szabó
چکیده

In this contribution we propose a technique to analyse arbitrary invariant subsets of chaotic dynamical systems. For this purpose we introduce the constrained Frobenius-Perron operator. We demonstrate the use of this operator by determining the geometrical multifractal spectrum of invariant chaotic subsets of one-dimensional maps which are either coexisting side by side indepen­ dently or are embedded in a larger set close to a crisis configuration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact weighted Frobenius-Perron operators and their spectra

In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.

متن کامل

On Aspects of Numerical Ergodic Theory: Stability of Ulam’s Method, Computing Oseledets Subspaces and Optimal Mixing

A dynamical system is a pairing between a set of states X ⊂ Rd and a map T : X which describes how the system evolves from state to state over time. The Perron– Frobenius, or transfer, operator is a natural extension of the point-by-point dynamics defined by T to an ensemble theory which describes the evolution of distributions of points. It features heavily in dynamical systems theory and in a...

متن کامل

PERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES

We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.

متن کامل

‎A matrix LSQR algorithm for solving constrained linear operator equations

In this work‎, ‎an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$‎ ‎and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$‎ ‎where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$‎, ‎$mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$‎, ‎$ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013